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Aspergillus fumigatus is the most important species in Aspergillus causing infective

lung diseases. This species has been reported to produce a large number of

extrolites, including secondary metabolites, acids, and proteins such as hydro-

phobins and extracellular enzymes. At least 226 potentially bioactive secondary

metabolites have been reported from A. fumigatus that can be ordered into 24

biosynthetic families. Of these families we have detected representatives from the

following families of secondary metabolites: fumigatins, fumigaclavines, fumiqui-

nazolines, trypacidin and monomethylsulochrin, fumagillins, gliotoxins, pseurotins,

chloroanthraquinones, fumitremorgins, verruculogen, helvolic acids, and pyripyr-

openes by HPLC with diode array detection and mass spectrometric detection.

There is still doubt whether A. fumigatus can produce tryptoquivalins, but all

isolates produce the related fumiquinazolines. We also tentatively detected

sphingofungins in A. fumigatus Af293 and in an isolate of A. lentulus. The

sphingofungins may have a similar role as the toxic fumonisins, found in A. niger. A

further number of mycotoxins, including ochratoxin A, and other secondary

metabolites have been reported from A. fumigatus, but in those cases either the

fungus or its metabolite appear to be misidentified.
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Introduction

Aspergillus fumigatus is the dominating species causing

fungal lung diseases in humans and animals [1�6]. Other

species in Aspergillus section Fumigati and its teleo-

morphic (sexual) state Neosartorya are also able to cause

aspergillosis, however. These species include A. lentulus

[7], N. pseudofischeri [8,9] and N. udagawae [10]. While

Neosartorya species produce both a sexual state with

ascospores and an asexual state with conidiospores, the

Aspergillus species only produce conidiospores. Several

new species have recently been described in section

Fumigati and Neosartorya [11�14], and an overview of

the 23 species of Neosartorya and 10 species in Asper-

gillus section Fumigati is provided by Samson et al. [14].

It is well known that isolates of A. fumigatus are able to

produce many extrolites [14�17], but of high importance

is gliotoxin, that has been found in lungs or other

infected tissues. Gliotoxin was found after experimental

aspergillosis [18], and has also been found naturally

occurring in turkey lungs infected with A. fumigatus [19].

Gliotoxin has also been found in a bovine udder infected

with A. fumigatus [20] and in human tissues [21].

Gliotoxin may not be the only mycotoxin involved in

mycosis [22] as several other extrolites have been

reported from A. fumigatus [1,15,16,23�26]. The anti-

biotic fumigacin (which was later shown to be a mixture

of helvolic acid and gliotoxin) has also been found in

human and animal pulmonary tissues [27�30].

Two isolates of A. fumigatus have been full-genome

sequenced and arrays are being developed for this

species [31�33]. The closely related species Neosartorya

fischeri is also being full-genome sequenced and this

species and another closely related species A. lentulus

and several new species we have described, can be

compared with, and used as controls, for A. fumigatus,

as their extrolite profiles are also known [11]. There are

still extrolites that have not been identified in

A. fumigatus and allied species [34�36], but a large
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number of extrolites are well characterized. Many

extrolites from A. fumigatus are associated with the
conidiospores, including gliotoxin, trypacidin, verrucu-

logen and fumigaclavine A [37�41] and are thus likely

to have effects in the initial lung infection process. The

global regulator gene laeA appear to have an effect on

conidial morphology, including associated extrolites

such as hydrophobins and other extrolites [42�44].

It is the purpose of this paper to list, update and

revise the profile of extrolites associated with A.

fumigatus and to analyse 40 strains of A. fumigatus to

examine the chemo-consistency in this species.

Materials and methods

Many isolates of Aspergillus section Fumigati were

examined for extrolite profiles using HPLC and MS
methods, and few isolates of A. fumigatus and A.

lentulus were specifically screened for sphingofungins.

A. fumigatus isolates from different sources were

emphasized (Table 1). All isolates were inoculated on

Czapek yeast autolysate (CYA) agar, yeast extract

sucrose (YES) agar, malt extract autolysate (MEA)

agar, Oat meal (OAT) agar at 258C and on CYA at

378C (see Samson et al. [45] for formulae). Secondary
metabolites were extracted from CYA and YES agar

after 7 days of growth in darkness, using the extraction

solvent ethyl acetate/dichloromethane/methanol (3:2:1,

v/v/v) with 1% (v/v) formic acid.

HPLC with diode array detection and high resolu-

tion mass spectrometric detection (HPLC-DAD-

HRMS), was performed on an Agilent 1100 system

with a Luna C18 II column (Phenomenex, Torrance,
CA) and equipped with a photo diode array detector

(DAD), and coupled to a LCT orthogonal time-of-

flight MS (Waters-Micromass, Manchester, UK), with

a Z-spray ESI source and a LockSpray probe [46].

Furthermore all isolates were analyzed by HPLC-DAD

using the method of Frisvad and Thrane [47,48] as

modified by Smedsgaard [49].

Samples were analyzed in positive and negative
electrospray interphase (ESI� and ESI�) using a

water-acetonitrile linear gradient system starting from

15% acetonitrile which was increased to 100% in 20 min

and holding 100% for 5 min [50]. In both ESI� and

ESI� two scan functions (1 s each) were used: the first

with a potential difference of 14 V between the

skimmers scanning m/z 100 to 900; the second with

40 V between the skimmers scanning m/z 100�2000.
Data analysis was performed as described previously

[50], peaks were matched against an internal reference

standard database (�730 compounds), the 33557

compounds in Antibase 2007 [51], previous data from

our group [17], and the review data in this paper.

Results

The profile of extrolites produced by A. fumigatus has

to be collected from several literature sources in

Table 1 Isolates of Aspergillus fumigatus examined

Isolate Source

CBS 542.75�ATCC 26606 Man, USA

CBS 143.89 Man, France

CBS 144.89�CEA10* Man, France

CBS 145.89 Man, France

CBS 146.89 Man, France

CBS 147.89 Man, France

IBT Stend1 Man, hospital Sundby,

Denmark

IBT Stend2 Man, hospital

Hvidovre, Denmark

Af293* Man, United Kingdom

CBS 133.61T�ATCC 1022 Chicken lung,

Connecticut, USA

IBT 16904 Saltern,Slovenia

IBT 16902 Saltern, Slovenia

IBT 16903 Saltern, Slovenia

IBT 16901 Saltern, Slovenia

IBT 24004 Saltern, Slovenia

ATCC 32722 Soil, Canada

NRRL 1979�IBT 15720 Soil, USA

CBS 113.26�ATCC 1028 Soil, Germany

CBS 132.54�QM 6b Soil

CBS 457.75�WB 5452 Soil, India

CBS 151.89 Stone, Germany

CBS 152.89 Stone, Germany

NRRL 5587 ?

IBT D47i Soil, Indonsia

CCRC 32120 Soil, Taiwan

IBT 25732 Soil under banana

tree, Kenya

IMI 376380�IBT 23720 Unknown

(reported ochratoxin

A producer)

CBS 545.65�ATCC 16913 Unknown

WB 5033�IBT 22612 Unknown (white

conidia)

IBT 23737 Unknown, Denmark

IBT 14904�ATCC 32722 Unknown, USA

CBS 192.65�IHEM 4392 Feed, Netherlands

CBS 148.89 Maize, France

CBS 149.89 Maize, France

CBS 150.89 Beetroot, France

IBT 21997�A195 Feed, Spain

(reported ochratoxin

A producer)

IBT 22023 Silage, Germany

IBT PerHag Silage, Sweden

IBT 22234 Ex tea factory, Uganda

IBT 21711 Food, Italy

*Full genome sequenced strains.
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conjunction with actual metabolic profiling of a series

of isolates of A. fumigatus. The data obtained here were
verified by comparison with authentic standards,

similar UV and high resolution mass spectra and

literature data. We examined the isolates of A. fumiga-

tus for all main secondary metabolites that have been

reported in the literature, often reported from one

isolate only. In this way we confirmed that isolates of A.

fumigatus produced some secondary metabolites con-

sistently, others by approximately half of the isolates,
and some reported secondary metabolites were appar-

ently not produced by A. fumigatus (Table 3). It is well

known that the production of extrolites is depending on

the growth medium and environmental factors [52�54],

but on the media Czapek yeast autolysate (CYA) agar

and yeast extract sucrose (YES) agar a large number of

these representatives of the 24 families of extrolites are

detectable using HPLC with diode array detection [24].
The extrolites most consistently produced were fumi-

quinazolines A/B, C/D and F/G (100%), gliotoxin

(38%), fumigaclavine C (100%), fumitremorgins

(100%), fumagillin (100%), helvolic acid (98%), pseur-

otin A (100%), fumigatins (35%), chloroanthraqui-

nones (70%), melanins (100%, only verified, however,

by observing that the bluegreen pigment is produced by

all the isolates), and pyripyropenes (48%) (Table 3). The
growth conditions and the incubation time chosen may

not have been optimal for production of all extrolites

by A. fumigatus.

(1) Epoxysuccinic acid and difructosedianhydride
(tricarboxylic acid cycle)

Epoxysuccinic acid seems to be the major organic acid

produced by A. fumigatus [55,56], whereas production

of citric acid appears to be weak [57]. The role of

epoxysuccinic acid in the life cycle of A. fumigatus is

unknown. Atypical carbohydrates, such as difructose

dianhydride may also be produced by A. fumigatus [58].
We did not examine any of the cultures for these two

metabolites, as the detection method was not adequate

for these particular metabolites.

(2) Fumigatins (polyketides)

The fumigatins and spinulosins consist of at least 21

polyketide extrolites (Table 1) and have been thoroughly

studied concerning their biosynthesis [59�69]. Fumiga-

tin and spinulosin are reported to be antibiotically

active against several gram-negative and gram-positive

bacteria [23,28] and fumigatin was cited to be toxic
against experimental animals by Austwick [1], while

Cole and Cox [23] claimed that vertebrate toxicity was

unknown. However, later it was shown that fumiqui-

nones A and B, in the same biosynthetic family, are

toxic to other kinds of animals (nematodes) [70].

Antibacterial and antinematodal activity of the fumi-

gatins and spinulosins can maybe explain their pre-

valence in soil isolates of A. fumigatus.
We found fumigatin in several isolates (35%), but it

was most common in soil-borne A. fumigatus (Table 3).

However, one isolate from a patient produced fumigatin.

(3) Trypacidins (polyketides, nitrogen in one extrolite)

Trypacidin [71�73] and monomethylsulochrin

[15,71,73] were isolated and their structure elucidated

by Turner [71] and Balan et al. [73]. Trypacidin is

antiprotozoal and also an antimicrobial antibiotic

[37,74]. Two other related extrolites, asperfumin, and

the nitrogen containing asperfumoid has also been

detected in A. fumigatus [15]. Trypacidin and mono-

methylsulochrin has been found in all isolates examined

of A. fumigatus [11].

Most isolates (75%) examined by us produced

trypacidin and monomethylsulochrin (Table 3). Isolates

producing these metabolites also produced the chlor-

oanthraquinones (Table 3).

(4) Chloro-anthraquinones or �anthrones (polyketides)

Emodin, physcion [15], 2-chloro-emodin, 2-chloro-citreor-

osein, 2-chloro-1,3,8-trihydroxy-6-methyl-9-anthrone, and

2-chloro-1,3,8-trihydroxy-6-hydroxymethyl-9-anthrone have

been reported from A. fumigatus [75]. These polyketides

have not been reported to have a role in the infection

process.

We found UV spectrum evidence for production of

several of the anthraquinone metabolites in many

strains of A. fumigatus (Table 3).

(5) Melanins (polyketides)

Aspergillus fumigatus is able to produce polyketide

derived melanins via a heptaketide shortening from

YWA1 to 1,3,6,8-tetrahydroxynaphthalene (1,3,6,

8-THN), which is the basis for production of 1,

8-dihydroxynaphthalene, the pentaketide compound

that will polymerize to melanin [76�78], giving A.

fumigatus the green conidium colour. Melanin has

been mentioned as one of several potential virulence

factors in A. fumigatus [79,80].

As all isolated had blue-green conidia, they probably

have the ability to produce this 1,8-dihydroxynaphtha-

lene derived polymer.
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(6) Sphingofungins and fumifungin (polyketides�alanine)

The sphingofungins A-D from A. fumigatus ATCC

20857 (from soil in Uruguay) are antifungal agents

[81,82] and are potent and specific inhibitors of serine

palmitoyl transferase, an enzyme essential in the the

biosynthesis of sphingolipids. Paecilomyces variotii

produces sphingofungins E and F [83]. Fumifungin

[84] was isolated from what was probably A.

viridinutans, as the fungus also produced viriditoxin,

but sphingofungins may also be produced by A.

fumigatus sensu stricto. These metabolites share a

similar backbone to the carcinogenic mycotoxins the

fumonisins produced by Fusarium species and an

Aspergillus species, A. niger [85] and may thus be

potential inhibitors of human nerve cells. Fumonisins

have been shown to cause pulmonary edema in pigs [86]

and down-regulates basal IL-8 expression in pig intes-

tine [87] and therefore sphingofungins may be likely

candidates to be involved in the lung infection process,

also in humans.
We examined two isolates from section Fumigati for

production of sphingofungins: the full genome se-

quenced A. fumigatus Af293 and A. lentulus IBT

27201. HPLC-MS data strongly indicated that both

species are able to produce these compounds (Fig. 2). A

viriditoxin producer that also produced fumifungin [84]

was probably not A. fumigatus or A. lentulus, as none of

these species are able to produce viriditoxin. The

fumifungin producing strain could have been A.

viridinutans, Neosartorya aurata, or N. denticulata as

these three species produces viriditoxin [14].

(7) Pseurotins (mixed biosynthetic origin: polyketide�
phenylalanine)

The pseurotins were first isolated from Pseudeurotium

ovalis (pseurotins A, B, C, D and E) [88�91], but were

later isolated from A. fumigatus (pseurotin A, 8-O-

demethylpseurotin, pseurotin F1 and F2 and synerazol)

[92,93]. These compounds are chitin synthase inhibi-

tors, but only the epoxy-pseurotin, synerazol, has

antifungal activity. It is not known whether the

pseurotins have biological activities of relevance for

the lung infection process. The closely related com-

pound azaspirene has been isolated from a Neosartorya

species [94].

We found that pseurotin A was produced by all 40

strains examined of A. fumigatus, but some additional

pseurotins, as identified based on UV-VIS spectra, were

often produced at the same time.

(8) Ergosterols (triterpenes)

Apart from ergosterol, produced by all fungi, A.

fumigatus has been reported to produce ergosterolpal-

mitat, ergosterolperoxide [95], ergosta-4,6,8(14),22.

-tetraen-3-one, ergosta-4,22-diene-3b-ol, 5a,8a-epi-

dioxy-ergosta-6,22-diene-3b-ol [15]. Ergosterolperoxide
has some antiviral properties [96].

We found ergosterol in all 40 isolates of A. fumigatus

examined, but did not screen for the other ergosterol

derived compounds.

(9) Helvolic acids (triterpenes)

Helvolic acid [15,97�101] is an antibiotic that is active

against both gram-positive and gram-negative bacteria.

Other products in the biosynthetic family, such as

helvolinic acid and 7-desacetoxyhelvolic acid have been

isolated from Sarocladium oryzae [102,103], but not yet

from A. fumigatus. The fusidic acids may also be closely
related, but has not been found in A. fumigatus [[104],

pp. 264�265]. The reported toxicity of helvolic acid may

be due to contamination with gliotoxin [1,23].

Helvolic acid was produced by nearly all strains

(98%) we examined of A. fumigatus (Table 3).

(10) Fumagillins (sesquiterpenes)

Trans-fumagillin was isolated from A. fumigatus by

Eble and Hanson [105], and its structure elucidated by

Tarbbell [106,107] and McCorkindale and Sime [108].

Further extrolites in this biosynthetic family have been

isolated later, inclusive fumagiringillin [109], demethox-
yfumagillol [110], Sch528647 [111], RK-95113 [112]

and closely related metabolites [113]. Ovalicin

[114,115], FR-111142 [116], or FR65814 [117] may

also be produced, but have been reported from other

fungi. The fumitoxins, toxic to both animals and plants

[118�122] were never structure elucidated, but based on

the chemical data presented, they appear to be mem-

bers of the fumagillin biosynthetic family. b-transber-
gamoten is a precursor of fumagillin [123].

We detected fumagillin in all strains of A. fumigatus

examined (Table 3).

(11) Fatty acids (fatty acids) and hexahydroxyprenyls
(polyterpenes)

A fumigatus has been reported to produce a series of

hydroxypolyprenols [124], ubiquinones, phthioic acid

and other lipids [125�127]. The role of these metabo-

lites in the infection process is unknown, but other

lipids (oxylipins) have been shown to be involved in

virulence [128].
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We did not screen for these lipids in the 40 extracts of

A. fumigatus.

(12) Siderochromes (N-hydroxyornithine with either three

glycines or one glycine and two serins)

Fusigen [129], ferricrocin and N?,N??,N???-triacetylfu-

sarinine C [130,132] are important iron-chelating

extrolites from A. fumigatus, that may play a significant

role in the infection process in animals [133,134].

As the production requires special substrates de-

pleted for iron, we did not examine the cultures for the

siderophores in our screening process.

(13) Gliotoxins (phenylalanine, m-tyrosine, methionine)

Gliotoxin was isolated from a strain of A. fumigatus by

Johnson et al. [135] and Menzel et al. [98] and later

structure elucidated [136]. Fumigacin [27,29] has been

found in animal and human tissue, but fumigacin was

later found to be a mixture of gliotoxin and helvolic

acid. Gliotoxin has been claimed to be involved in

diseases caused by A. fumigatus [40,137,138]. The less

toxic bisdethiobis(methylthio)gliotoxin has also been

reported from A. fumigatus [139,140] as has gliotoxin

G, the tetrasulphide analogue of gliotoxin [139]. Other

gliotoxins, including gliotoxin monoacetate [141,142],

and gliotoxin E and G [143,144] may also be extrolites

of A. fumigatus, but have been isolated from Tricho-

derma virens and Penicillium lilacinoechinulatum (Fris-

vad JC and Thrane U, unpublished).

Gliotoxin is best produced on media with low C/N

ratio, so the media used here for screening of A.

fumigatus extrolites were not optimal for its expression.

When tested on such media [17] all isolates of A.

fumigatus seems to be able to produce gliotoxin.

(14) Fumigaclavins (tryptophane and terpene unit

(dimethylallyl))

Agroclavine, festuclavine, elymoclavine, chanoclavine I,

fumigaclavine A, B, and C [15,145�149] are produced

by A. fumigatus. The biosynthetic genes for the ergot

alkaloids in A. fumigatus have been studied by Coyle

and Panaccione [150]; Li and Unsöld [151]; Unsöld and

Li [152], Stack et al. [153].

All 40 isolates examined of A. fumigatus produced

fumigaclavine C (Table 3), the end-product in the

biosynthetic family.

(15) Fumitremorgins, verruculogen, tryprostatins,
cyclotrypostatins and spirotryprostatins (tryptophane,
proline and terpene (dimethylallyl) groups)

Brevianamide F [154,155] is a conceived precursor

of the diverse biosynthetic family of fumitremorgins,

including verruculogen [24,156�159], cyclotrypostatins
[160], tryprostatins [161�163], spirotryprostatins

[164,165], fumitremorgin A & B [140,166,172], fumi-

tremorgin C [15,146,159,173], TR-2 [174], TR-3

�12,13-dihydroxyfumitremorgin C and demethoxyfu-

mitremorgin C [162,163], 12,13-dihydrofumitremorgin

C [159,175], and 15-acetoxyverruculogen [23]. In all,

this extrolite family consists of 20 known members.

Tryprostatin A is an inhibitor of microtubule assembly
[176], and in general the fumitremorgins are cell cycle

inhibitors and tremorgenic mycotoxins [23].

We found that the fumitremorgins (A, B, C), TR-2

and verruculogen were produced by all isolates of A.

fumigatus examined (Table 3), but the full genome

sequenced Af293 [31] only produce brevianamide F

[17,177].

(16) Simple diketopioperazines (two amino acids)

Alanyl-leucyl and alanyl-isoleucyl, prolyl-phenylalanyl,

prolyl-glycyl, prolyl-prolyl, prolyl-valyl, 4-hydroxypro-

lyl-leucyl, 4-hydroxyprolyl-phenylalanyl, and prolyl-

leucyl diketopirazines, all consisting of L-amino acids,

have all been reported from A. fumigatus [15,178,179].

Several of those are antibiotically active [15].

We did not detect any of those simple diketopiper-
azines in A. fumigatus.

(17) Pyripyropenes (meroterpenoids and nicotinic acid)

Pyripyropenes A-R have been reported from A. fumi-

gatus [180�187]. The pyripyropenes have the ability to

inhibit acyl-CoA:cholesterol acyltransferase and may

thus play a role in the infection process.

We found that approximately half of the isolates of

A. fumigatus produced pyripyropenes (48%, Table 3).
We did not detect those metabolites in Af293, but the

other full genome sequence strain of A. fumigatus (CBS

144.89�CEA 10) did produced pyripyropenes.

(18) Fumiquinazolines (anthranilic acid, tryptophane, valine)

Fumiquinazolines A-E [140,188,189] were reported

from marine isolates of A. fumigatus. These quinazolins

have been reported to be moderately cytotoxic.
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We found that the fumiquinazolines were consis-

tently produced by all 40 isolates of A. fumigatus

examined (Table 3).

(19) Tryptoquivalines (anthranilic acid, tryptophane, valine,
terpene unit (dimethylallyl))

The tryptoquivalines and tryptoquivalones were ori-

ginally isolated from A. clavatus [190,191] but trypto-

quivaline A and E to N has been reported from A.

fumigatus [192�195]. It was later shown that A.

fumigatiaffinis is a very efficient producer of (some of)

these tryptoquivalines [11,14]. However, tryptoquiva-

line J was isolated from a strain of A. fumigatus by

Afiyatullov [159], so it is possible that also A. fumigatus

can produce at least some of these extrolites.

The tryptoquivalins were not detected in our ana-

lyses of 40 isolates of A. fumigatus. Earlier reports of

tryptoquivalins [25] from A. fumigatus were apparently

based on the fact that the UV-VIS spectra of the

tryptoquivalins and the fumiquinazolines are quite

similar. HPLC-HR-MS analysis showed that the major

compounds with such UV spectra were all fumiquina-

zolines.

(20) N-(2-cis(4-hydroxyphenyl)ethenyl)-formamide

N-(2-cis(4-hydroxyphenyl)ethenyl)-formamide is a pla-

telet aggregation inhibitor that was isolated from a

strain identified as A. fumigatus [196].

We were not able to detect this extrolite in any of 40

extracts of A. fumigatus.

(21) Restrictocins (polypeptides)

Restrictocin, mitogillin and ‘asp F1’, small basic

proteins, are cytotoxins that cleave ribosomal RNA

[197�199]. The culture originally examined (ATCC

34475�NRRL 2869) was first identified as A. restric-

tus, but later reidentified as A. fumigatus [200]. A leader

sequence in the gene coding for these proteins protects

the producer strains from suicide [201], and these

proteins have also been identified as major allergens

from the conidia, mycelium and culture filtrate of A.

fumigatus [198]. ‘Asp F1’ was first found in urine of

patients that suffered from invasive aspergillosis [197],

so these compounds may be of significance in A.

fumigatus mediated aspergillosis.

We did not screen A. fumigatus for any proteins in

this study.

(22) Volatile extrolites (including sesquiterpenes, alcohols

and ketones)

Sesquiterpenes provisionally detected from from A.

fumigatus include 10(14)-(�)-aromadendrene, bicy-

cloelemene, bicyclooctane-2-one, camphene, a-cadi-

nene, 2-carene, caryophyllene, a & b-curcumene,

cyclooctene, dihydroedulane I, b-elemol, a-farnesene,

trans-b-farnesene, (�)-fenchol, germacrene A & B,

italicene, a-longipenene, megastigma-4,6(E),8(Z)-tri-

ene, p-mentha-6,8-dien-2-ol, 2-methyl-2-bornane,

2-methylenebornanene, a-muurolene, neo-allo-ocimene,

and b-phellandrene (39). Other volatile metabolites

reported include 2-acetyl-5-methylfuran, anisole,

3-cycloheptane-1-one, 2,3-dimethylbutanoic acid meth-

yl ester, 2,5-dimethylfuran, 4,4-dimethylpentenoic acid

methyl ester, dodecane, 4-ethylbutan-4-olide, 2-ethyl-

furan, 2-ethyl-5-methylfuran, 1-ethyl-2-methylbenzene,

furaneol, 3-hexanone, isopropylfuran, 1-methoxy-

3-methylbenzene, 2-methylbutanoic acid and its methyl

ester, 4-methyl-2-(3-methyl-3-butenyl)furan, 3-methyl-

1-heptene, 6-methyl-2-heptanone, 2-methyl-2,4-hexa-

diene, 2-methylphenole, 1-(3-methylphenyl)-ethanone,

3-octanone, 1,3,6-octatriene, styrene, 3,5,7-trimethyl-

2E,4E,6E,8E-decatetraene, 2,3,5-trimethylfuran (39).

The role of these volatiles in the infection process of

A. fumigatus, if any, is unknown.

(23) Primary metabolites

The vitamin riboflavin has also been found in A.

fumigatus [202,203], and so has several other primary

widespread primary metabolites.

(24) Biotransformations

A. fumigatus is also capable of converting some plant

metabolites for example melitolic acid to 4-hydroxy-

coumarin and o-coumaric acid to dicoumarol [204] and

phenylacetic acid to 2,6-dihydroxyphenylacetic acid

[205]. It is also not known whether this ability to

bioconvert metabolites play a role in the animal

infection process.

(25) Proteins

Apart from the restrictocins, A. fumigatus also produce

hydrophobins and several extracellular enzymes and

these do play a role in the fungal infection process

[16,206].
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(26) Extrolites erroneously reported from Aspergillus

fumigatus

Aspergillus fumigatus has been claimed to produce a

large number of mycotoxins and other extrolites,

including ochratoxin A [207�210], indications of afla-

toxin [211], cyclopiazonic acid [212], kojic acid

[213,214], sterigmatocystin [215] and fumifungin�vir-

iditoxin [84]. The isolates producing these mycotoxins

and other biologically active extrolites appear to be

misidentified. For example cyclopiazonic acid is pro-

duced by A. lentulus and isolates of the latter species

can have been mistaken for A. fumigatus [17]. The

isolate reported to produce fumifungin also produced

viriditoxin [84], and the latter is a typical metabolite

produced by A. viridinutans, another member of

Aspergillus subgenus Fumigati section Fumigati

[14,216�218]. In the case of ochratoxin A, sterigmato-

cystin and aflatoxin, probably the mycotoxin itself was

misidentified.

Molecules that may be artefacts, such as GERI-

BP002-A [219] that is a sterol biosynthesis inhibitor,

have been reported as extrolites of A. fumigatus. This

compound may or may not be a real secondary

metabolite.

Expansolide, antafumicin A & B, and cytochalasin E

were all reported from a strain claimed to be A.

fumigatus [220]. These extrolites have only been found

in A. clavatus [221], so it is highly probable that the

reported producing strain represented the latter species.

Ruakuric acid has been isolated from a strain of A.

fumigatus growing in conjunction with a coral lichen

in hot sulfurous springs, New Zealand [222]. We have

not been able to examine this culture and we have not

yet detected compunds with the characteristics of

ruakuric acid from any strain of A. fumigatus sensu

stricto.

Aurasperone C was reported from A. fumigatus by

Mitchell et al. [36], but this metabolite is a common

metabolite in Aspergillus section Nigri [223] and we

have not been able to detect it in any strain of A.

fumigatus in this study.

Fumigatonin was also reported from A. fumigatus

[224], but the isolation of the chemically related
novofumigatonin from A. novofumigatus [35] indicates

that fumigatonin is produced only by A. novofumigatus.

None of the isolates of A. fumigatus examined here

(Table 1) produced aflatoxins, antafumicins, cyclopia-

zonic acid, cytochalasin E, expansolides, kojic acid,

ochratoxins, sterigmatocystin, or viriditoxin.

(27) Extrolites of A. fumigatus Af293

Af293, the full genome sequenced strain of A. fumiga-

tus [31] produced, fumigaclavines, fumiquinazolines,

trypacidin and mono-methylsulochrin, fumagillins,
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gliotoxins, pseurotins, chloroanthraquinones, fumitre-

morgins, verruculogen, helvolic acids and sphingofun-

gins (Fig. 1). The presence of sphingofungins A, C, D,

or fumifungin (or all of those) was indicated by HPLC-

MS analysis (Fig. 2). The formulae of these extrolites
and the other secondary metabolites produced by A.

fumigatus are shown in Fig. 1 and Fig. 3.

Discussion

We have been able to detect most of the major
mycotoxins and other extrolites known from A. fumi-

gatus in clinical strains, including the full genome

sequenced Af293 and CBS 144.89 (�CEA10). These

two strains produced gliotoxin, helvolic acid, fumagil-

lin, fumigaclavine C, brevianamide F, fumiquinazolines

and pseurotin A. Af293 and CBS 144.89 differed in that

Af293 produced trypacidin, mono-methylsulochrin and

some chloroanthraquinones, whereas CBS 144.89 pro-
duced a series of fumitremorgins (TR-2, fumitremorgin

A, B, C and verruculogen). We also detected what we

tentatively identified as sphingofungins in Af293, but

have not screened other A. fumigatus strains for these

extrolites yet. The other clinical strains also produced

most of the well known secondary metabolites of A.

fumigatus (Table 3), but 50% of the clinical strains did

not produce fumigatin and pyripyropenes. However

other investigators have found these extrolites in a

lower proportion of the strains examined for example

from silage [225] or from saw mills [226]. This may be

because some of the strains were A. lentulus [17] or

other strains similar to A. fumigatus [14]. Furthermore

our results show that on the media CYA and YES only

few strains show small peaks of gliotoxin, while they

are produced in much higher amounts on media such

as yeast extract agar (YE) [17]. Therefore the frequency

of gliotoxin (38%) in A. fumigatus may be much higher

in reality. On the other hand, the media CYA and YES

are very good media for production of most other

secondary metabolites from A. fumigatus, and we

recommend to use those media in screening for all

other secondary metabolites than gliotoxin.

The number of biosynthetic families of secondary

metabolites reported to be produced by A. fumigatus
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(24) is impressive and so is the number of individual

extrolites [226] (Table 2). We have not screened for all

these 226 metabolites, but have concentrated on the

most toxic or otherwise bioactive major metabolites

from each biosynthetic family. It is still an open

question how many of these secondary metabolites

are involved in the infection process of lungs, but there

is evidence that at least gliotoxin is involved [21,40,43,

137,138,227].

Nierman et al. [31] found by bioinformatic analysis of

the full genome of A. fumigatus that 14 gene clusters

indicated that they coded for non ribosomal peptide

synthases (NRPS). Examination of the chemical phe-

notype (exometabolome) of A. fumigatus shows that

gliotoxins, fumigaclavines, fumitremorgins, fumiquina-

zolins, siderochromes, diketopiperazines, restrictocins,

N-(2-cis(4-hydroxyphenyl)ethenyl-formamide, and pos-

sibly tryptoquivalines, in addition to amino acids that
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Table 2 Extrolites produced by isolates of Aspergillus fumigatus

Extrolite family Number of members Individual members

1. Epoxysuccinic acid 1 Epoxysuccinic acid
2. Fumigatins 21 Fumigatin

Fumigatin oxide
Fumigatin chlorohydrins
Fumigatol
Spinulosin
Spinulosin hydrate
Spinulosin quinol-hydrat
Dihydrospinulosin quino
Phyllostine
Orsellinic acid
Orcinol
m-cresol
3,4-dihydroxytoluquinone
4-hydroxy-3-methoxytoluquinone
3-hydroxytoluquinone
3,6-dihydroxytoluquinone
3-hydroxy-4-methoxy-
Toluquinone 1,6-epoxide
4-carboxy-5,5?-dihydroxy-3,3?-dimethyldiphenyl
Fumiquinone A
Fumiquinone B

3. Trypacidins 6 Trypacidin
Bisdechlorogeodin
Monomethylsulochrin
Sulochrin-2?-methylether
Asperfumin
Asperfumoid

4. Anthraquinones and anthrones 5 Emodin
Physcion
2-chloroemodin
2-chloro-1,3,8-trihydroxy-
6-methylanthrone
2-chloro-1,3,8-trihydroxy-
6-hydroxymethylanthrone

5. Melanins 8 YWA1
1,3,6,8-THN
Flaviolin
Scytalone
1,3,8-THN
2-HJ
Vermelone
1,8-DHN

6. Sphingofungins 7 Sphingofungin A-D
Sphingofungins E-F?
Fumifungin

7. Pseurotins 11 Pseurotin A-E
8-O-demethylpseurotin A
Synerazol
RK-95113
Azaspirene?
FD-839
Pseurotin F2

8 Sterols 7 Ergosterol
Ergosterolperoxide
Ergosterolpalmitat
24-methylenophenol
Ergosta-4,6,8(14),22-tetraen-3-one
Ergosta-4,22-diene-3b-ol 5a,8a-Epidioxy-ergosta-
6,22-diene-3b-ol

9. Helvolic acid 3 Helvolic acid
Helvolinic acid
7-desacetoxyhelvolic acid

10. Fumagillins 13 Fumagillin
Fumitoxins A-D
Fumagillol
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involve the addition of the polyketides: sphingofungins,

pseurotins, trypacidins, pyripyropenes are all NRPS

dependent. This could account for in all, 13 biosynthetic

families that involve amino acids. However, many of the

secondary metabolites of A. fumigatus are of mixed

biosynthetic origin. Concerning terpene involvement

helvolic acids, ergosterolperoxide, fumagillin, hexahy-

dropolyprenols are pure terpene secondary metabolites,

but the fumigaclavines, fumitremorgins and tryptoqui-

valines have added dimethylallyl groups, so at least 7

gene clusters should contain genes coding for terpene

biosynthesis. Nierman et al. [31] found that there were 7

Table 2 (Continued)

Extrolite family Number of members Individual members

5-Demethoxyfumagillol
Fumagiringillin
FR-111142
Sch528647
RK-95113
Ovalicin?
b-trans-bergamotene

11. Hexahydropolyprenyls 5 Hexahydropolyprenyls A-E
11a. Phthioic acid 2 Phthioic acid

Teichoic acid
11b. Hydroxyphenyls 1 bis(2-hydroxy-3-tert. butyl-5-

Methylphenyl)methane
(� GERI-BP002-A)

12. Siderochromes 2 Fusigen
Ferrichrome

13. Gliotoxins 5 Gliotoxin
Gliotoxin E
Gliotoxin G
S-methylgliotoxin
bisdethiobis(methylthio)-
Gliotoxin

14. Fumigaclavins 7 Agroclavine
Elymoclavin
Chanoclavine I
Festuclavin
Fumigaclavine A-C

15. Fumitremorgins 20 Brevianamide F
Fumitremorgin A-C
Verruculogen
15-acetoxyverruculogen
Demethoxyfumitremorgin C
12,13-dihydroxyfumitremorgin C (� TR-3)
12,13-dihydrofumitremorgin C
TR-2
Cyclotryprostatin A-D
Dehydrotryprostatin
Tryprostatin A & B
Spirotryprostatin A & B
‘Compound 6?

16 Simple diketopiperazines 9 Alanyl-leucyl and alanyl-isoleucyl, prolyl-pheny-
lalanyl, prolyl-glycyl, prolyl-prolyl, prolyl-valyl, 4-
hydroxyprolyl-leucyl, 4-hydroxyprolyl-phenylala-
nyl, and prolyl-leucyl diketopirazines

17. Pyripyropenes 19 Pyripyropene A-R
GERI-BP001-A

18. Fumiquinazolines 7 Fumiquinazoline A-G
19. Tryptoquivalins 11 Tryptoquivaline?

Nortryptoquivaline?
Tryptoquivaline E-N?

20. N-(2-cis(4-hydroxyphenyl)ethenyl-formamide 1
21. Restrictocins 3 Restrictocin

Mitogillin
Asp F1

22. Volatile extrolites 25�28
Sum:
24 Biosynthetic families 226 secondary metabolites
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Table 3 Consistency in production of extrolites by Aspergillus fumigatus from different sources as evaluated using HPLC and isolates grown on

CYA and YES agar for one week at 258C

Isolate Source Secondary metabolite family£

2 3 4 9 10 13 14 15 18 7 17

CBS 542.75 man, USA � � � � � � � � � � �
CBS 143.89 man, F � � � � � � � � � � �
CBS 144.89 man, F � � � � � � � � � � �
CBS 145.89 man, F � � � � � � � � � � �
CBS 146.89 man, F � � � � � � � � � � �
CBS 147.89 man, F � � � � � � � � � � �
IBT Stend1 man, DK � � � � � � � � � � �
IBT Stend2 man, DK � � � � � � � � � � �
Af293 man, UK � � � � � � � � � � �
CBS 133.61T Chicken lung � � � � � � � � � �
IBT 16904 Saltern,SL � � � � � � � � � � �
IBT 16902 Saltern, SL � � � � � � � � � � �
IBT 16903 Saltern, SL � � � � � � � � � �
IBT 16901 Saltern, SL � � � � � � � � � � �
IBT 24004 Saltern, SL � � � � � � � � � � �
ATCC 32722 Soil, CAN � � � � � � � � � � �
NRRL 1979 Soil, USA � � � � � �* � � � � �
CBS 113.26 Soil, D � � � � � � � � � � �
CBS 132.54 Soil? � � � � � � � � � � �
CBS 457.75 Soil, IND � � � � � � � � � � �
CBS 151.89 Stone, D � � � � � � � � � � �
CBS 152.89 stone, D � � � � � � � � � � �
NRRL 5587 ? � � � � � � � � � � �
IBT D47I soil, INDO � � � � � � � � � � �
CCRC 32120 soil, TAI � � � � � � � � � � �
IBT 25732 soil, K � � � � � � � � � � �
IMI 376380 ? � � � � � � � � � � �
CBS 545.65 ? � � � � � � � � � � �
WB 5033 ? � � � � � � � � � � �
IBT 23737 ?, DK � � � � � � � � � � �
ATCC 32722 ?, USA � � � � � � � � � � �
CBS 192.65 Feed, NL � � � � � � � � � � �
CBS 148.89 Maize, F � � � � � � � � � � �
CBS 149.89 Maize, F � � � � � � � � � � �
CBS 150.89 Beetroot, F � � � � � � � � � � �
IBT 21997 feed, E � � � � � � � � � � �
IBT 22023 silage, D � � � � � � � � � � �
IBT PerHag Silage, S � � � � � � � � � � �
IBT 22234 Tea factory, U � � � � � � � � � � �
IBT food, I � � � � � � � � � � �

£ Metabolite family nr (frequency of extrolite production out of 40 strains).

*Gliotoxin detected originally.

2. Fumigatin (35%).

3. Trypacidin (75%).

4. Chloro-anthraquinones or -anthrones (70%).

9. Helvolic acid (98%).

10. Fumagillins (93%).

13. Gliotoxin (�38%).

14. Fumigaclavines (100%).

15. Fumitremorgins (98%).

18. Fumiquinazolines (100%).

7. Pseurotins (100%).

17. Pyripyropenes (48%).

– 2008 ISHAM, Medical Mycology

S12 Frisvad et al.



gene clusters accounting for dimethylallyl tryptophane

synthases and here we can account for three of these.
However pure terpene secondary metabolite clusters

were not mentioned. It has been shown that the

fumonisins are not only depending on the fumonisin

gene cluster, but also on regulating genes on other

chromosomes and environmental factors [228,229].

Finally polyketide synthases (PKS) include fumigatin,

trypacidins, chloroanthraquinones, melanins, sphingo-

fungins, pyripyropenes and pseurotins, accounting for
at least 7 PKS gene clusters, only half of the 14 PKS

gene clusters listed by Nierman et al. [31]. However, the

PKS and NRPS gene clusters may be differently

organized and thus pure PKS gene clusters and mixed

PKS-NRPS clusters may be difficult to detect using

bioinformatic methods. The gene clusters for gliotoxin,

fumitremorgins, fumigaclavines and siderophores have

been provisionally detected [153,177,227,230].
The production of sphingofungins by A. fumigatus

has been reported previously in A. fumigatus ATCC

20857 [81,82], and the closely related sphingofungin

called fumifungin was isolated from a fungus identified

as A. fumigatus Y-83,0405 [84]. We have not been able

to get those cultures, but the latter appear to be A.

viridinutans rather than A. fumigatus, as it also

produced viriditoxin. The detection of compounds
with the mass around 432.3 strongly indicates that A.

fumigatus Af 293 and A. lentulus IBT 27201 produce

these sphingofungins, but as sphingofungin A, C, D or

fumifungin almost have the same mass, it would be

necessary to isolate, purify and characterize these

compounds using NMR to be sure they are actually

sphingofungins. It is intriguing that the mass trace for

A. fumigatus for these compounds is almost identical to
that of A. lentulus, indicating a common biosynthesis.

Since there are few secondary metabolites in common

between A. fumigatus and A. lentulus [17], it is tempting

to speculate that the sphingofungins might be involed

in the lung infection process. All 10 species of

Aspergillus and 23 species of Neosartorya should be

analyzed for sphingofungins to see if all or only the

pathogenic species produce them. The production of
sphingofungins was consistent on YES and CYA agar

only with variations in amounts.

We have shown that strains of A. fumigatus produce

the same profile of secondary metabolites, but that all

metabolites are not necessarily expressed phenotypi-

cally in any given strain. The new possibilities of

bioinformatic search based on full genome sequenced

strains will show whether genes for fumigatin and for
pyripyropenes are present in a strain like Af293, where

we as yet have never detected these secondary metabo-

lites. If the geneclusters are present, they may be silent

or defective in the strains that do not produce them.

However, many strains consistently produce a series of
different secondary metabolites, the most consistent

being fumigaclavines, fumitremorgins, fumiquinazolins,

pseurotins, helvolic acid and fumagillin. The polyke-

tides are less consistently expressed, but maybe other

growth media or stimuli will induce their production.
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